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Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were
constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor
antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of
naltrindole and naltrexone analogues was assembled by pooling biological and structural data
from independent studies. A process of “leave one data set out”, similar to the traditional “leave
one out” cross-validation procedure employed in partial least squares (PLS) analysis, was
utilized to study the feasibility of pooling data in the present case. These studies indicate that
our approach yields statistically significant and highly predictive CoMFA models from the pooled
data set of δ, µ, and κ opioid receptor antagonists. All models showed excellent internal
predictability and self-consistency: q2 ) 0.69/r2 ) 0.91 (δ), q2 ) 0.67/r2 ) 0.92 (µ), and q2 )
0.60/r2 ) 0.96 (κ). The CoMFA models were further validated using two separate test sets:
one test set was selected randomly from the pooled data set, while the other test set was
retrieved from other published sources. The overall excellent agreement between CoMFA-
predicted and experimental binding affinities for a structurally diverse array of ligands across
all three opioid receptor subtypes gives testimony to the superb predictive power of these models.
CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists
are dominated by steric rather than electrostatic interactions with the three opioid receptor
binding sites. The CoMFA steric-electrostatic contour maps corresponding to the δ, µ, and κ
opioid receptor subtypes reflected the characteristic similarities and differences in the familiar
“message-address” concept of opioid receptor ligands. Structural modifications to increase
selectivity for the δ over µ and κ opioid receptors have been predicted on the basis of the CoMFA
contour maps. The structure-activity relationships (SARs) together with the CoMFA models
should find utility for the rational design of subtype-selective opioid receptor antagonists.

Introduction

Opioid receptors belong to the rhodopsin-like subfam-
ily within the superfamily of G-protein coupled receptors
(GPCRs).1 Three opioid receptor subtypes, designated
δ, µ, and κ, have been identified in the central nervous
system (CNS) and periphery.2,3 While the crystal struc-
tures of the opioid receptors remain unavailable, there
is abundant biological and structural information for
known ligands. Antagonists selective for the δ receptor
modulate the development of tolerance and dependence
induced by µ agonists such as morphine.4 They also alter
the behavioral effects of drugs of abuse, such as cocaine,5
and evoke favorable immunomodulatory effects.6 Fur-
thermore, recent studies demonstrate that δ antago-
nists, when delivered in concert with µ agonists, result
in effective pain modulation without the negative side
effects (such as physical addiction) usually associated
with µ receptor activation.7

Naltrindole (NTI, Figure 1), a nonpeptidic δ antago-
nist with high binding affinity (Ki ) 0.22 nM) and
moderate selectivity (selectivity ratio: µ/δ ) 120, κ/δ )
138) for the δ opioid receptor,8 is widely used for the
pharmacological characterization of opioid receptor
subtypes. Recognition of NTI by the opioid receptors is

attributed to the existence of the tyramine group, which
fulfills the “message” component of the “message-
address” system postulated for opioid ligands with
morphine-like structures (Figure 1).9 The high potency
and selectivity for the δ receptor have been attributed
to the conformationally constrained benzene moiety,
which mimics the side chain of the putative “address”
component (Phe4) of enkephalin.9 Since the discovery
of NTI by Portoghese et al.,10 numerous NTI analogues
have been synthesized and biologically evaluated to
explore the structure-activity relationship (SAR) and
to design more selective δ antagonists.11-18

Molecular modeling techniques are valuable tools for
drug design and can be used to rationalize the interac-
tion of ligands with their target receptors. Three-
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Figure 1. The structure of NTI. The “message” and “address”
for δ opioid receptor are respectively colored in red and blue.
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dimensional quantitative structure-activity relation-
ship (3D-QSAR) models, constructed by employing
comparative molecular field analysis (CoMFA), are
particularly effective in cases when the receptor struc-
ture is unknown. CoMFA samples the steric and elec-
trostatic fields surrounding a set of ligands and con-
structs a 3D-QSAR model by correlating these 3D fields
with the corresponding experimental activities of ligands
with respect to a common target receptor.

The quality of the biological data set is paramount in
building valid QSAR models. The range and distribution
of the data set should meet certain requirements.
Furthermore, biological data are prone to variation
between laboratories and even between studies within
the same laboratory. Such variations can confound
attempts to model and interpret the biological data
using QSAR and other molecular modeling techniques.
As a consequence, mixing biological data retrieved from
different laboratories or even from separate publications
in the same laboratory is considered risky and is
ordinarily discouraged. Nevertheless, pooling may be
permissible in cases where a single source of plentiful
high-quality data is lacking and when measures are
taken to validate the resulting models. The present case
study pertaining to opioid receptor ligands is a salient
example.

In the present study, a large data set of opioid
receptor antagonists with common pharmacophoric
features was amalgamated from seven independently
published data sources. The suitability of pooling data
in this manner was explored using a “leave one data
set out” cross-validation methodology. Statistically sig-
nificant and highly predictive CoMFA models for all
three receptor subtypes were obtained from the final
pooled data set. Furthermore, these models predicted
the biological activities of a structurally diverse array
of compounds retrieved from additional published
sources. By virtue of their unique ability to differentiate
the structural requirements for ligand binding to the
opioid receptor subtypes, these models offer utility in
guiding the rational design of potent and selective δ
opioid antagonists for therapeutic applications.

Experimental Section
All molecular modeling operations were performed on

Silicon Graphics, Inc. (SGI) workstations. The crystal structure
of Naltrexone19 was used as the starting conformation for
subsequent construction of NTI and its analogues. The struc-
tures were built with the Sybyl 6.8 molecular modeling
software package.20 The MMFF94 force field and partial atomic
charges were used to optimize the geometries of all compounds.
All compounds were protonated at atom N17 (Table 1) in the
same spatial location.

Data Collection. Data from seven separately published
articles using identical binding assay protocols8,11-16 were
combined for our CoMFA studies. Briefly, the competitive
binding assays were performed against rat brain membrane
for δ and µ receptors and guinea pig brain membrane for the
κ receptor. The competitive ligands for the δ, µ, and κ receptors
were [3H]DADLE, [3H]DAMGO, and [3H]U69593, respectively.
A total of 74 compounds with detectable binding affinity for
the δ receptor were pooled, yielding a data set that spanned
>5 logarithmic (log) units in terms of pKi and contained seven
distinct core structures (Table 1). The experimental biological
activities of the data set compounds are evenly distributed:
16 weakly active compounds (pKi < 7.0), 30 moderately active
compounds (7.0 < pKi < 8.0), and 29 highly active compounds
(pKi > 8.0).

As is customary for CoMFA, the data set was separated into
a training set (61 compounds) for final model development and
a test set (13 compounds) for model validation. The test-set
compounds were chosen randomly with some bias toward
ensuring representation from the full range of biological data
in the training set. The resulting test set contained 3 weakly
active, 5 moderately active, and 5 highly active compounds.

To permit comparison among the separate models con-
structed for the three receptor subtypes, only compounds with
δ binding affinity (i.e., compounds used to develop and validate
the δ model) were considered for the µ and κ CoMFA models.
Of the 58 (59) compounds also exhibiting binding affinity for
the µ (κ) receptor, the training set consisted of 48 (49)
compounds. The test sets in both cases consisted of 10
compounds: 7 weakly active, 2 moderately active, and 1 highly
active compounds. The structures and measured binding
affinities (pKi) of all compounds are shown in Table 1.

To further evaluate the predictability of the CoMFA models,
a diverse collection of 27 compounds from other published
reports was selected as an external test set and predicted by
the models.21-24 The compounds with pyridomorphinan (73-
82) and phenylmorphan (97-100) core structures were biologi-
cally evaluated by the same assay as the pooled compounds
(i.e., δ and µ binding affinity on rat brain membrane; κ binding
affinity on guinea pig brain membrane with the same radio-
labeled competitive ligands). However, the compounds with
cyprodime and NTI core structures (83-96) were tested on
rat brain membrane for all three opioid receptors. The
competitive ligands for the δ, µ, and κ receptors were [3H][Ile5,6]-
deltorphin II, [3H]DAMGO, and [3H]U69593, respectively. The
structures and binding affinities (pKi) of these compounds are
shown in Table 2. Aside from the phenylmorphan analogues,
these compounds were aligned to NTI with the same alignment
scheme as the pooled compounds. The phenylmorphan ana-
logues were aligned to NTI by fitting the phenolic ring and
the basic nitrogen atom.

CoMFA Procedure. NTI, the most active δ opioid receptor
compound, was selected as the template for aligning the
compounds in the training and test sets. Since all ligands are
fairly rigid and share key pharmacophoric features, the atom-
fit method was employed for ligand alignment. Specifically,
three atoms were chosen for the alignment: the basic nitrogen
N17 and the pseudoatoms at the centroids of rings A and B
(Table 1). The standard CoMFA procedure as implemented in
Sybyl 6.8 was performed. Each ligand was placed in a 3D
lattice with grid points separated by 2 Å. A Csp3 atom with a
formal charge of +1 and a van der Waals radius of 1.52 Å
served as the probe. The steric (van der Waals) and electro-
static (Coulombic) interactions were calculated at each grid
point by summing the individual interaction energies between
each atom of the ligand molecule and the probe atom. A
distance-dependent dielectric function ∈ ) ∈0Rij with ∈0 ) 1.0
was adopted to apply Coulomb’s law. The computed field
energies were truncated to 30 kcal/mol for the steric fields and
to (30 kcal/mol for the electrostatic fields.

Partial Least-Squares Analysis. The partial least-
squares (PLS) technique was employed to generate a linear
relationship that correlates changes in the computed steric and
electrostatic potential fields with changes in the corresponding
experimental values of the binding affinity (pKi) for the data
set of ligands. Employing the CoMFA potential energy fields
for each molecule as the independent variable and the corre-
sponding pKi values as the dependent variable, PLS converts
the steric and electrostatic field descriptors to so-called latent
variables or principal components (PCs) that consist of linear
combinations of the original independent variables.

To assess the internal predictive ability of the CoMFA
models, we employed both “leave one data set out” and “leave
one out” cross-validation procedures. In this procedure, each
data set or compound is excluded one at a time, after which
its activity is predicted by the model constructed from the
remaining compounds in the data set. Cross-validation deter-
mines the optimum number of PCs, corresponding to the
smallest error of prediction and the highest cross-validated
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Table 1. Opioid Receptor Antagonists Considered in the Present Studya

pKi

exptl pred

compd core R1 R2 R3 R4 R5 δ µ κ δ µ κ ref

NTI 1 OH CPM OH H H 9.66 7.57 7.52 9.39 7.08 7.28 11
NTX 4 OH CPM H 7.40 8.60 8.15 7.87 8.73 8.47 13
1 1 OH Et OH H H 8.30 5.60 5.52 8.28 6.21 5.73 11
2 1 OH n-Pr OH H H 8.70 6.15 6.42 8.13 TS 6.45 11
3 1 OH n-Bu OH H H 8.08 5.89 6.05 7.99 5.59 5.85 11
4 1 OH n-pentyl OH H H 7.80 5.55 5.70 7.80 5.63 5.94 11
5 1 OH n-hexyl OH H H 7.59 5.34 5.51 7.63 5.53 TS 11
6 1 OH n-heptyl OH H H 7.10 5.34 - TS TS - 11
7 1 OH i-Pr OH H H 7.48 - 5.21 7.90 - 5.55 11
8 1 OH 2-Me-Pr OH H H 8.42 5.59 6.19 8.29 5.96 6.11 11
9 1 OH 3-Me-Bu OH H H 8.42 5.89 6.17 8.12 5.78 TS 11
10 1 OH E-cronyl OH H H 8.13 5.92 6.02 8.04 5.87 6.04 11
11 1 OH 2-Me-allyl OH H H 8.33 5.10 5.42 TS 5.67 5.58 11
12 1 OH 3-Me-cronyl OH H H 7.60 5.55 5.49 7.80 5.55 5.80 11
13 1 OH CPM OH H 4-Ph 7.28 5.82 5.53 TS TS 5.36 12
14 1 OH CPM OH H 4-OPh 7.17 5.84 5.88 7.55 6.05 TS 12
15 1 OH CPM OH H 4-OBz 7.83 6.44 6.27 7.60 6.13 6.16 12
16 1 OH CPM OH H 5-Ph 7.80 6.78 6.45 8.11 6.85 6.44 12
17 1 OH CPM OH H 5-OPh 7.75 6.53 7.12 7.86 6.63 7.09 12
18 1 OH CPM OH H 5-OBz 8.36 7.09 7.09 8.18 7.17 7.02 12
19 1 OH CPM OH H 6-Ph 7.74 5.89 6.20 TS 5.81 6.21 12
20 1 OH CPM OH H 6-OPh 8.19 6.63 6.63 7.87 6.56 6.62 12
21 1 OH CPM OH H 6-OBz 8.17 6.17 6.33 8.16 5.92 6.44 12
22 1 OH CPM OH H 7-Ph 8.68 6.91 6.51 8.66 6.58 6.38 12
23 1 OH CPM OH H 7-OPh 9.15 7.47 7.47 8.67 7.33 TS 12
24 1 OH CPM OH H 7-OBz 8.51 6.80 6.59 9.33 6.73 6.55 12
25 1 OH CPM OH H 5-E-Py 8.43 7.12 7.70 8.10 TS 7.74 12
26 1 H CPM OH H H 7.46 - 4.96 8.18 - 5.02 16
27 1 Me CPM OH H H 7.15 - - TS - 16
28 1 vinyl CPM OH H H 7.21 - 4.75 6.98 - 4.60 16
29 1 2-furanyl CPM OH H H 6.02 - - 6.12 - - 16
30 1 Ph CPM OH H H 4.98 - - 5.38 - - 16
31 1 3-OH-Ph CPM OH H H 5.79 - - 5.38 - - 16
32 1 OMe Me H H H 7.02 - - 7.07 - - 14
33 1 OMe Me H Me H 7.57 - - 7.33 - - 14
34 1 OMe Me H n-Bu H 6.43 - - 6.10 - - 14
35 1 OH Me H H H 8.62 6.15 - 8.36 6.49 - 14
36 1 OH Me H Me H 9.15 6.62 6.90 8.62 TS TS 14
37 1 OH Me H n-Bu H 7.66 5.96 6.14 TS 6.47 5.93 14
38 1 OH CPM H Me H 8.64 7.18 7.44 9.20 6.77 7.24 14
39 1 OH 2-Me-allyl H Me H 8.05 5.97 6.07 TS 5.61 6.08 14
40 1 OH E-cronyl H Me H 8.64 5.99 6.92 8.75 6.19 6.99 14
41 7 OMe Me H - - 7.03 5.55 - 7.26 5.45 - 8
42 7 OMe Et H - - 6.29 5.87 5.44 TS 5.55 5.29 8
43 7 OMe CPM H - - 8.15 4.88 5.10 7.90 5.28 TS 8
44 7 OMe Me OH - - 6.66 5.55 - 6.79 TS - 8
45 7 OMe Et OH - - 6.16 6.10 - 6.48 5.86 - 8
46 7 OMe CPM OH - - 7.66 5.73 5.50 7.45 5.60 5.66 8
47 2 OH CPM H H H 9.11 8.82 8.06 TS 8.66 TS 13
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q2 (or r2
cv). PLS analysis was repeated without validation using

the optimum number of PCs to generate a final CoMFA model
from which the conventional r2, a measure of the internal
consistency of the model, was derived. To improve efficiency
and reduce “noise”, a column filter was applied by omitting
from the analysis those columns (lattice points) with an energy
variance <2.0 kcal/mol. All CoMFA models are represented
as color contour maps to enable visualization of those steric
and electrostatic fields that significantly contribute to a model.

Results and Discussion

Pooling Data from Independent Studies. To
achieve a statistically significant 3D-QSAR model,
certain criteria for data set parameters should be met.
As a rule of thumb, the following conditions should be
satisfied: (1) a minimum range of three log units for
compound binding affinity, (2) no less than ∼20 com-
pounds (corresponding to approximately 5 compounds
per PC) for model development, and (3) the biological
activities of the compounds should be evenly distributed.
Since within- and between-laboratory variations in
pharmacological data are virtually unavoidable, all
possible efforts should be taken to obtain the biological
data from a single source. When this is not possible or
feasible, as is the case with these opioid receptor
antagonists, extra precautions should be taken to
validate mixing of multisource data.

As delineation of the binding and receptor subtype
specificity for opioid receptor activation has important
clinical implications, we examined the possibility of
pooling ligand binding data from separate published
studies. One mandatory requirement for pooling such
biological data is that they are derived using identical
experimental protocols. We retrieved biological data
from seven independent publications, each of which
reported results for 6-15 NTI analogues using the same
assay and radiolabeled competitive binding ligands (i.e.,

[3H]DADLE (δ), [3H]DAMGO (µ), and [3H]U69593 (κ)).
Taken alone, each individual data set is unable to fulfill
the necessary requirements for model development.
Collectively however, the combined data set of 74
compounds derived from seven core structures (Table
1) exhibits biological data that are evenly distributed
over >5 log units in term of δ binding affinity (pKi).

To examine the feasibility of utilizing these combined
data, preliminary CoMFA studies were performed for
all 74 compounds based on the binding affinity for the
δ receptor subtype. A process of “leave one data set out”,
analogous to the standard “leave one out” cross-valida-
tion implemented in PLS analysis, was conducted in
which ligands taken from each publication (e.g., set S1
in Table 3) were systematically excluded from the
training data set and served as the test set for model
validation. Standard PLS analyses were carried out for
the remaining compounds (e.g., Model-S1). Each of these
seven CoMFA models (Model-S1 to Model-S7) produced
strong indicators of statistical significance (r2 > 0.85)
and internal predictive ability (q2 > 0.60) using only four
PCs (Table 3). All compounds in the test data sets were
predicted well (i.e., <1 log unit of experimental pKi)
aside from a single set,16 where the compounds exhibited
notably lower pKi values than the training-set com-
pounds. On the basis of this preliminary analysis, we
conclude that pooling data from different sources is a
feasible strategy for CoMFA model development in the
present case.

Development of the Final CoMFA Models. We
selected 61, 48, and 49 compounds as the training sets
to develop 3D-QSAR models for the δ, µ, and κ opioid
receptor antagonists, respectively. The corresponding
CoMFA-PLS models yielded excellent internal predict-
ability and consistency with q2 ) 0.69/r2 ) 0.91, q2 )
0.67/r2 ) 0.92, and q2 ) 0.60/r2 ) 0.96 (Table 4). The

Table 1 (Continued)

pKi

exptl pred

compd core R1 R2 R3 R4 R5 δ µ κ δ µ κ ref

48 2 OH CPM Ph H H 8.75 7.96 7.74 TS 8.12 7.72 13
49 2 OH CPM H Ph H 9.06 7.87 7.75 8.74 7.71 7.78 13
50 2 OH CPM H 4-Cl-Ph H 8.66 7.29 7.70 8.51 7.58 7.59 13
51 2 OH CPM H H Ph 7.14 6.72 6.58 7.06 6.76 TS 13
52 2 OH CPM Me H Ph 6.90 6.81 6.17 TS 6.62 6.28 13
53 2 OH CPM Ph H Ph 7.07 6.19 5.67 6.85 6.23 5.77 13
54 2 OH CPM (CHdCH)2 Ph 7.14 6.51 6.57 7.14 6.22 6.23 13
55 3 OH CPM H - H 8.46 8.38 8.20 8.13 TS 8.50 13
56 3 OH CPM Me - H 7.64 8.22 7.60 8.12 8.27 TS 13
57 3 OH CPM Ph - H 7.80 7.66 7.9 6 7.73 TS 7.79 13
58 3 OH CPM H - Ph 6.64 6.46 6.67 6.80 6.68 6.55 13
59 3 OH CPM Me - Ph 6.49 6.60 6.25 6.70 6.66 6.41 13
60 3 OH CPM Bz - Ph 7.00 6.63 5.90 6.93 6.49 5.92 13
61 3 OH CPM Ph - Ph 6.46 5.93 5.60 6.36 TS 5.84 13
62 1 OH 2-Me-allyl OH H H 8.33 5.10 5.42 8.08 5.42 5.32 15
63 1 OMe 2-Me-allyl OH H H 6.30 - - 6.87 - - 15
64 2 OH 2-Me-allyl H 4-Cl-Ph H 7.80 - 6.52 TS - 6.42 15
65 2 OMe 2-Me-allyl H 4-Cl-Ph H 6.59 - 5.49 6.66 - 5.41 15
66 4 OH 2-Me-allyl SI - - 7.39 5.70 6.00 7.48 5.41 6.06 15
67 4 OH 2-Me-allyl dCHPh - - 6.68 5.35 5.35 6.70 5.40 5.28 15
68 4 OMe 2-Me-allyl dCHPh - - 5.47 - - 5.42 - - 15
69 5 OH - - - - 7.40 6.85 7.42 7.40 TS 6.90 15
70 5 OMe - - - - 5.62 - 5.51 TS - 5.85 15
71 6 OH - - - - 8.09 5.89 6.24 8.10 6.25 TS 15
72 6 OMe - - - - 7.36 - - 7.36 - - 15

a CPM, cyclopropylmethyl; Bz, benzyl; Py, pyridinyl; SI, spiroindanyl; 5′-E-Py, 5′-E-CHdCH-2-pyridinyl; TS, test set; -, no value available;
pKi ) -log Ki.
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strong correlation between observed and CoMFA-
predicted pKi values for all three opioid receptor sub-
types is evident from the tabulated results (Table 1) and
corresponding plots (parts A, B, and C of Figure 2,
respectively).

The predictive power of the CoMFA models was
validated for these δ, µ, and κ antagonists using the test
sets. Selection of the test-set compounds was conducted
randomly, except that some bias was applied to ensure
adequate coverage in terms of binding affinity and
structural variation. Comparison of the experimentally
observed and CoMFA-predicted pKi values of the δ, µ,

Table 2. Molecular Structures and Binding Affinities of External Test-Set Compounds

pKi

δ µ κ

compd R1 R2 R3 R4 exptl pred resa exptl pred resa exptl pred resa ref

73 OH allyl OH 4-Cl 8.09 8.16 -0.07 6.33 7.01 -0.68 7.12 6.73 0.39 22
74 OH Me OH H 8.54 8.11 0.43 7.59 7.61 -0.02 6.44 7.04 -0.60 22
75 OH Me OH 4-Cl 8.41 7.92 0.49 6.64 7.49 -0.85 6.33 6.86 -0.53 22
76 OH Me OH 4-Br 8.40 7.90 0.50 6.71 7.47 -0.76 6.36 6.82 -0.46 22
77 OH Me H H 8.31 8.26 0.05 7.62 7.49 0.13 7.09 7.36 -0.27 22
78 OH Me H 4-Cl 8.36 8.06 0.30 6.83 7.40 -0.57 7.11 7.15 -0.04 22
79 OH Me H 4-Br 8.30 8.05 0.25 6.70 7.39 -0.69 7.04 7.18 -0.14 22
80 OH Me H 3,4-Cl 8.43 7.95 0.48 7.03 7.36 -0.33 6.56 6.95 -0.39 22
81 OH Me H 2,4-Cl 8.96 8.21 0.75 7.01 7.40 -0.39 6.39 7.12 -0.73 22
82 OH CPM H 4-Cl 8.59 8.67 -0.08 7.21 7.46 -0.25 8.22 7.84 0.38 22
83 - CPM OEt Me 9.10 8.86 0.24 7.41 6.49 0.92 7.23 6.80 0.43 24
84 - allyl OEt Me 7.97 8.49 -0.52 6.18 5.91 0.27 6.12 5.88 0.24 24
85 - Me OEt Me 8.24 8.22 0.02 6.15 6.34 -0.19 6.54 5.9 0.64 24
87 OMe 6.38 7.35 -0.97 7.97 7.98 -0.01 6.96 7.47 -0.51 23
88 O(n-Bu) 6.12 7.09 -0.97 7.86 7.98 -0.12 6.58 7.40 -0.82 23
89 O(cinnamyl) 6.08 6.43 -0.35 7.55 8.07 -0.52 6.44 7.40 -0.96 23
90 O(CH2)3Ph 5.85 6.52 -0.67 7.36 8.00 -0.64 6.68 7.23 -0.55 23
91 OCH2Ph 6.67 5.99 0.68 7.94 8.04 -0.10 7.25 6.84 0.41 23
92 O(n-hexyl) 5.93 6.39 -0.46 7.35 7.97 -0.62 6.36 7.28 -0.92 23
93 OH 8.30 7.50 0.80 9.40 8.10 1.30 8.23 7.38 0.85 23
94 OMe 7.77 7.36 0.41 9.47 7.81 1.66 8.13 7.33 0.80 23
95 O(n-Bu) 6.63 7.10 -0.47 7.83 7.88 -0.05 6.82 7.32 -0.50 23
96 - - - - 7.34 7.41 -0.07 9.08 8.33 0.75 7.64 6.89 0.75 23
97 - - - - 7.83 7.20 0.63 8.48 7.84 0.64 6.91 7.03 -0.12 21
98 (CH2)3N(CH3)2 5.84 6.57 -0.73 7.24 7.19 0.05 7.92 7.36 0.56 21
99 (CH2)2NHC(dCH)NH2 7.25 7.45 -0.20 8.28 7.16 1.12 7.63 6.87 0.76 21

100 (CH2)3NHC(dCH)NH2 5.76 6.41 -0.65 7.06 6.3 0.76 7.88 7.14 0.74 21
a The residual (res) corresponds to the signed difference between the experimental and CoMFA-predicted pKi value.

Table 3. Summary of Statistical Parameters for the
Preliminary CoMFA Studiesa

model PC q2 SEE r2 F

S1 4 0.72 0.32 0.91 137
S2 4 0.62 0.31 0.89 122
S3 4 0.69 0.28 0.92 171
S4 4 0.75 0.34 0.89 115
S5 4 0.75 0.30 0.91 152
S6 4 0.71 0.31 0.91 129
S7 4 0.70 0.01 0.90 135

a SEE, standard error of estimate; F, F ratio, defined as r2/(1 -
r2) and representing the ratio of properties explained by the QSAR
model to those not explained by it.36
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and κ antagonists in the respective test sets (Tables 5,
6, and 7; Figure 2, parts A, B, and C) further confirms
the predictive ability of the models. The residuals

(differences) between corresponding values of the ex-
perimental and predicted binding affinity are <1 log
unit, and all test-set compounds follow the regression
trend line established by the training sets. In addition,
the CoMFA-predicted pKi values of the δ, µ, and κ test-
set compounds gave high values of the predictive r2,
0.70, 0.89, and 0.77, respectively (Table 4). Defined
analogously to q2, the predictive r2 is used to evaluate
the overall performance of a model by comparing the
accuracy of a series of predictions with the experimen-
tally known target property data. Successive application
of “leave 10 out” cross-validation on the data set for 50,
100, and 150 times yielded consistent results with q2 >
0.60 (data not shown). The exceptional statistical ro-
bustness of these CoMFA models adds confidence in
their utility for predicting the binding affinity of NTI
opioid-receptor antagonists. It also further corroborates
the validity of pooled experimental data in the present
case.

Validation of CoMFA Models by External Test-
Set Compounds. Twenty-seven compounds, represent-
ing five distinct core structures (Table 2), were selected
from other publications as an external test set to further
evaluate the predictability of the CoMFA models. The

Table 4. Summary of Results, Including Statistical Parameters, for Final CoMFA models of the δ, µ and κ Antagonists

size of
training set

size of
test set PCs q2 r2 SEE F

steric
%

electrostatic
%

predictive
r2

δ 61 13 4 0.69 0.91 0.29 146 75 25 0.70
µ 48 10 4 0.67 0.92 0.27 118 65 35 0.89
κ 49 10 6 0.60 0.96 0.19 162 67 33 0.77

Figure 2. A plot of CoMFA-predicted vs experimental pKi

values of the training-set, test-set, and external test-set
compounds for the δ (A: upper), µ (B: middle), and κ (C: lower)
opioid receptors: (0) training set, (2) test set, (b) external test
set.

Table 5. Comparison of Experimental and Predicted pKi
Values of the Test-Set Compounds for the δ Antagonist CoMFA
Model

pKi pKi

compd exptl pred res compd exptl pred res

6 7.10 7.63 -0.53 42 6.29 6.94 -0.55
11 8.33 8.33 0.00 47 9.11 8.24 0.87
13 7.28 7.18 0.10 48 8.75 8.11 0.64
19 7.74 8.28 -0.54 52 6.90 7.00 -0.10
27 7.46 7.83 -0.39 64 7.80 7.94 -0.14
37 7.66 7.41 0.25 70 5.62 6.09 -0.47
39 8.05 8.64 -0.59

Table 6. Comparison of Experimental and Predicted pKi
Values of the Test-Set Compounds for the µ Antagonist CoMFA
Model

pKi pKi

compd exptl pred res compd exptl pred res

2 6.15 5.57 0.58 44 5.55 5.78 -0.23
6 5.34 5.53 -0.19 55 8.38 8.28 0.10

13 5.82 5.75 0.07 57 7.66 7.86 -0.20
25 7.12 6.64 0.48 61 5.93 6.09 -0.16
36 6.62 6.92 -0.30 69 6.85 6.48 0.37

Table 7. Comparison of Experimental and Predicted pKi
Values of the Test-Set Compounds for the κ Antagonist CoMFA
Model

pKi pKi

compd exptl pred res compd exptl pred res

5 5.51 5.94 -0.43 43 5.10 5.70 -0.60
9 6.17 5.67 0.50 47 8.06 8.37 -0.21

14 5.88 6.44 -0.58 51 6.58 6.42 0.16
23 7.47 6.95 0.52 56 7.60 8.18 -0.58
36 6.90 6.53 0.37 71 6.24 6.04 0.20
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core structures in this external test set differ substan-
tially in many cases from those included in the CoMFA
models. It is noteworthy that none of the cyprodime and
phenylmorphan analogues were included in the devel-
opment of the present CoMFA models. Moreover, for
these cyprodime analogues, the δ binding affinities were
measured using a different competitive ligand (viz., [3H]-
[Ile5,6]deltorphin II rather than [3H]DADLE), and the κ

binding affinities were assayed on rat brain membrane
instead of guinea pig brain membrane. The pyridomor-
phinan and NTI analogues are opioid antagonists selec-
tive for the δ receptor, whereas cyprodime and phenyl-
morphan analogues are antagonists selective respectively
for µ and κ receptors. Notwithstanding these variations,
all compounds were well predicted by the present
CoMFA models in terms of binding affinity (pKi) for the
three opioid receptors. The results are shown in Table
2 and plotted in Figure 2A-C. The average residuals
for δ, µ, and κ receptor binding affinities are 0.45, 0.53,
and 0.54 log units, respectively. Furthermore, these
compounds all fit well within the regression trend line
established by the training sets of the CoMFA models.
The predicted κ binding affinities of compounds 83-96
are very close to their experimental values, despite the
implicit uncertainties of cross-species extrapolation. It
seems plausible that these compounds bind to both rat
and guinea pig brain κ membranes in a similar fashion.
In view of their excellent predictability across a broad
range of structurally diverse opioid ligands that vary
widely in affinity and selectivity for the opioid receptors,
these CoMFA models provide valuable tools for guiding
the rational design of novel opioids and for predicting
their biological activity prior to chemical synthesis and
biological testing.

Interpretation of CoMFA Models. The steric and
electrostatic CoMFA color-contour maps can be regarded
as visual representations of the 3D-QSAR models
(Figure 3). The colored polyhedra represent spatial
regions around the ligands where variations in steric
or electrostatic fields are associated with differences in
the target property (i.e., pKi). The green (yellow) con-
tours correspond to regions where increased steric bulk
is favored (disfavored); the blue (red) contours cor-
respond to regions where increased electropositive (elec-
tronegative) character is associated with enhanced
ligand binding affinity. The individual contributions
from the steric and electrostatic fields for the present
models are 75%/25%, 65%/35%, and 67%/33%, respec-
tively, for the δ, µ, and κ CoMFA models (Table 4). Such
field contributions demonstrate that the variations in
binding affinity among these antagonists are dominated
by steric interactions with the three opioid receptor
binding sites.

As our ultimate goal is to design δ selective ligands,
the compounds selected for model development all
exhibit binding affinity for the δ opioid receptor. Whereas
the entire data set of 74 NTI analogues exhibit detect-
able δ binding affinity, some compounds with sterically
bulky (e.g. Ph, compound 30; 3-OH-Ph, compound 31)
and electronegative (e.g. methoxy, compounds 32-34)
substituents at position 3 (Table 1) are effectively devoid
of binding affinity for the µ and κ opioid receptors.
Hence, the corresponding µ and κ CoMFA models were
constructed from biological data for 58 (59) compounds.

The interaction between opioid receptors and their
ligands has been described in terms of the familiar
“message-address” concept.25,26 The “message” repre-
sents those structural features common to all opioids
that are recognized similarly by the three types of
receptors (δ, κ, and µ). The “address” represents those
specific structural features that confer high selectivity
for a particular opioid receptor subtype (e.g., δ). For
ligands with morphine-like structure that are selective
for the δ opioid receptor (i.e., NTI), the tyramine moiety
corresponds to the “message” while the conformationally
constrained steric groups linked to the morphinan
nucleus (i.e., benzene on NTI) act as the “address”
(Figure 1). This concept has been applied frequently in
the past to design potent, subtype-selective opioid
receptor ligands such as SIOM27 and norNBI.28

CoMFA Contour Maps Are Consistent with the
“Message” Concept. By comparing the steric and
electrostatic maps for the three opioid receptor subtypes,
common features were found in the tyramine moiety
(“message”) of all ligands. A large green polyhedron is
located at the site of the substitutions on the basic
nitrogen (N17) on all three steric maps, consistent with
the observation that bulky N-substitutions on N17 of
opioid antagonists are well-tolerated for the three
receptor subtypes.11,22 Yellow and blue polyhedra are
present near the 3 position of NTI for the δ and κ

receptors but not for the µ receptor (Figure 3), consistent
with the complete loss of binding affinity for the µ
receptor when sterically bulky (e.g. 2-furanyl, compound
29) and electronegative (e.g. methoxy, compound 70)
substitutions occupy this position. This finding suggests
that alkylation of phenolic hydroxyl and lipophilic
substitutions at the 3 position are detrimental for
binding to the three opioid receptors, which is in good
agreement with the experimental SARs8,22,29 and phar-
macophore models of morphine-like opioids.30

CoMFA Contour Maps Are Consistent with the
“Address” Concept. The most distinct color changes
are found in regions around the indolic ring of NTI,
corresponding to the “address” portion of δ receptor
selective ligands (Figure 3). The CoMFA contour maps
for the δ receptor model display a large green polyhe-
dron nearby the δ “address” region; thus, sterically
bulky substitutions at positions 5′, 6′, and 7′ (Table 1)
are well tolerated for δ receptor binding (e.g., 5′-
benzyloxy, compound 18; 6′-phenoxy, compound 20; and
7′-phenyl, compound 22). In contrast, yellow polyhedra
dominate this area on the maps for the µ and κ models,
as evidenced by diminished binding affinity for the µ
and κ receptors by 5′ substitutions, although 7′ substitu-
tions are well-tolerated (e.g., 5′-phenyl, compound 16).
The absence of polyhedra (blue, red) around positions
4′, 5′, 6′, and 7′ of NTI on the δ electrostatic maps
indicates that electrostatic effects on δ receptor binding
are negligible in this region, which is consistent with
the observation that halogen substitutions at these
positions are well-tolerated for δ receptor binding.29 In
sharp contrast, the blue polyhedra located around
positions 5′ on the µ maps and 1′, 2′, 5′, and 7′ on the κ

maps are indicative that more electropositive groups are
desirable for ligand binding to the µ and κ receptors.
The large blue volume around the indolic ring on the κ

electrostatic contour map coincides with the observation
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that a secondary basic group (e.g., 5′-E-CHdCH-pyridi-
nyl, compound 25) acts as the κ receptor “address” in
this region.31-34 Furthermore, the red polyhedron near
the 5 position of naltrexone on the δ and µ maps
suggests that electronegative substitutions at this posi-
tion are favorable for the binding of naltrexone ana-
logues to the δ and µ receptors. This interpretation is
consistent with the finding that the presence of pyridine
(e.g., compound 47) and carbonyl (e.g., compound 4) at
this position is favorable for δ and µ receptor binding,
respectively. In contrast, the blue polyhedron located
in this region on the κ maps indicates that electropos-
itive substitutions (e.g. NH, compound 69) are favorable
for κ receptor binding.

Additional Implications Suggested by the CoM-
FA Contour Maps. In addition to similarities in the
“message” region and differences in the “address” region,
distinctions are also observed around positions 8 and
14 of NTI (Table 1). The substitutions in this region (e.g.,
14-H and 8-Me, compound 36) have negligible effects
on the binding affinities for the δ opioid receptor;
therefore, colored polyhedra are absent here. This result
concurs with findings that the replacement of 14-
hydroxyl by hydrogen and the alkylation of 14-amino-
morphinedole produced little effect on δ binding affin-
ity.22,35 The green polyhedron on the µ maps suggests
that sterically bulky substitutions (e.g., 8-Me, compound
38) are desirable for increasing binding affinity for the

Figure 3. CoMFA steric (left) and electrostatic (right) contour maps for the δ (upper), µ (middle), and κ (lower) opioid receptors.
To assist visual clarity, NTI and naltrexone are inserted into the maps as a ball-and-stick rendering with color-coded atom types:
C (magenta and cyan), N (blue), and O (red). Regions around the ligands where sterically bulky groups are favorable (green) or
unfavorable (yellow) for enhanced binding affinity are color-coded accordingly. Similarly, regions where electronegative (blue)
and electropositive (red) groups are favorable for enhanced ligand binding are colored accordingly.
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µ opioid receptor, while the blue polyhedron on the κ

maps suggests that electropositive substitutions (e.g.,
14-OH, compound 46) in this region are favorable for
binding to the κ opioid receptor. The SARs derived from
interpretation of this region should provide additional
clues for conferring subtype selectivity in addition to the
“address” moiety.

Comparison of the CoMFA maps indicates that the
presence of a bulky moiety in the “address” region is
crucial for δ selectivity, while a second basic group
confers selectivity for κ opioid receptor. This conclusion
essentially reiterates a key tenet of the “message-
address” concept, specifically, that selectivity of NTI and
its analogues for the δ opioid receptor is attributed to
the presence of a bulky group attached to the morphinan
nucleus9,17 and that selectivity for the κ opioid receptor
results from the existence of a second basic group.31-34

Our laboratory is particularly interested in delineat-
ing the pharmacophoric elements for conferring high
binding affinity and selectivity for the δ opioid receptor.
To achieve high selectivity for δ over µ and κ opioid
receptors, approaches are suggested by the present
CoMFA models to enhance the binding affinity for δ
receptor or to decrease the binding affinity for µ and κ

receptors. For example, introduction of bulky groups at
the 5′ position of NTI is predicted to enhance δ selectiv-
ity by increasing the δ binding affinity while decreasing
the µ and κ binding affinity. Electronegative substitu-
tions at the 5′ position are predicted to decrease the
binding affinity for the µ and κ receptors but have little
effect on δ binding affinity, with a net effect of enhanc-
ing selectivity for the δ receptor. In addition, structural
modification at positions 8 and 14 of NTI could also
confer δ selectivity. Less bulky substitutions at position
8 are predicted to be less favorable for µ compared with
δ receptor binding. Likewise, electronegative substitu-
tions at position 14 are predicted less favorable for κ

compared with δ binding, leading to enhanced selectiv-
ity for the δ receptor.

Summary and Conclusions

3D-QSAR models were constructed in order to gain
insights into the SARs of opioid receptor antagonists.
A large data set for opioid antagonists with classic
opiate structures was created by pooling ligand infor-
mation from different studies to obtain significant and
useful CoMFA models. A process of “leave one data set
out”, similar to traditional “leave one out” cross-valida-
tion procedure employed in partial least-squares (PLS)
analysis, was utilized to study the feasibility of pooling
data from different sources. These studies demonstrated
the feasibility of this approach for the present applica-
tion. Separate CoMFA models were developed from the
pooled data set for the δ, µ, and κ antagonists. These
CoMFA models showed excellent internal predictability
and consistency, and validation using test-set com-
pounds yielded a predicted pKi value within 1 log unit
of the experimental value in all cases. The predictive
ability of the present models is further substantiated
by the predictive r2: 0.70 (δ), 0.89 (µ), and 0.77 (κ). An
external test set consisting of five distinct, structurally
diverse, core structures was selected to further evaluate
the predictability of the CoMFA models. Consistently
good predictions for the external test-set compounds

substantiate the robust predictive power of these CoM-
FA models, thus recommending their utility in predict-
ing the binding affinities for compounds beyond those
considered in the present study.

CoMFA field analysis demonstrated that variations
in the binding affinity of opioid antagonists are domi-
nated by steric rather than electrostatic interactions
with the three opioid receptor subtypes. By comparing
the steric and electrostatic contour maps among the
three opioid receptors, common patterns were found
with respect to substitutions at O3 and N17 correspond-
ing to the “message” region of opioid receptor ligands.
As would be expected, significant differences in the
CoMFA contour maps were observed in the “address”
region. Differences were also found in the region of
positions 8 and 14 of NTI. Bulky and electronegative
substitutions at position 5′ of NTI are predicted to
increase the selectivity for δ over µ and κ opioid
receptors. Likewise, less bulky substitutions at position
8 and electronegative substitutions at position 14 are
predicted to enhance selectivity for the δ receptor. These
SAR observations, together with the CoMFA models,
may find use in the rational design of novel opioid
antagonists and in the prediction of their relative
binding affinity for the δ, µ, and κ opioid receptors.
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